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SUMMARY

Multi-level geometrical approaches in the study of aorto-coronaric bypass anastomoses con�gurations
are discussed. The theory of optimal control based on adjoint formulation is applied in order to opti-
mize the shape of the incoming branch of the bypass (the toe) into the coronary. At this level, two
possible options are available in shape design: one implements local boundary variations in computa-
tional domain, the other, based on the theory of small perturbations, makes use of a linearized design
in a reference domain. At a coarser level, reduced basis methodologies based on parametrized partial
di�erential equations are developed to provide (a) a sensitivity analysis for geometrical quantities of
interest in bypass con�gurations and (b) rapid and reliable prediction of integral functional outputs. The
aim is (i) to provide design indications for arterial surgery in the perspective of future development for
prosthetic bypasses, (ii) to develop multi-level numerical methods for optimization and shape design by
optimal control, and (iii) to provide an input–output relationship led by models with lower complexity
and computational costs. We have numerically investigated a reduced model based on Stokes equations
and a vorticity cost functional (to be minimized) in the down-�eld zone of bypass: a Taylor like patch
has been found. A feedback procedure with Navier–Stokes �uid model is proposed based on the analysis
of wall shear stress-related indexes. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. FRAMEWORK: CFD IN HAEMODYNAMICS

When a coronary artery is a�ected by a stenosis, the heart muscle cannot be properly oxy-
genated through blood. Aorto-coronaric anastomosis restores the oxygen amount through a
bypass surgery downstream an occlusion. At present, di�erent kinds and shapes of aorto-
coronaric bypass anastomoses are available and, consequently, di�erent surgery procedures
are used to set up a bypass. A bypass can be made up either by organic material (e.g.
the saphena vein taken from patient’s legs or the mammary artery) or by prosthetic mate-
rial. Prosthetic bypasses are less invasive. They may feature very di�erent shapes for bypass
anastomoses, such as, e.g. cu�ed arteriovenous access grafts.
Mathematical modelling and numerical simulation of physiological �ows allow a better

understanding of phenomena involved in coronary diseases (see References [1, 2]). Improve-
ment in the understanding of the genesis of coronary diseases is very important as it allows
the reduction of surgical and post-surgical failures. It may also suggest new means in bypass
surgical procedures as well as with less invasive methods to devise new shapes in
bypass con�guration (see Reference [3] for an introduction to optimal design for arterial
bypass anastomosis).

1.1. A geometrical multi-level investigation
The background provided by mathematical modelling and numerical simulation has led us to
apply the optimal control theory of systems governed by partial di�erential equations (PDEs)
with the aim of optimizing the (full) con�guration and the (local) shape of a simpli�ed
bypass model. In support to this aim at macro-geometrical level e�cient schemes for reduced-
basis methodology [4] applied to parametrized partial di�erential equations (P2DEs) are being
used to provide useful and quick indications (outputs) in a repetitive design environment
as shape design requires. With the reduced basis approach also a sensitivity analysis of the
initial con�guration and a study of important geometrical quantities in bypass can be obtained
(see Reference [5] for an introduction and Reference [6] for details). Figure 1 clari�es our
geometrical double-level of interest for bypass design.

1.2. Two control approaches
At micro-geometrical level, optimal control of one (or several) aspects of the problem entails
the minimization of a cost functional which describes physical quantities involved in the
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Figure 1. Bypass schemes: macro geometrical (left) and local con�gurations (right).
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speci�c problem. The problem is related both to optimal shape design (see Reference [7])
and �ow control (involved in the observation of the evolving system and in cost functionals
(such as vorticity or wall shear stress)). The optimization process is carried out by a control
function used as parameter in modelling the shape of the domain. At this level, two control
approaches have been used: in the former, the control function is used to de�ne directly the
boundary shape (local boundary variation method) in the true domain (see Reference [8]); in
the latter, the control function is used to de�ne the mapping transformation from the reference
domain to the true one. In this case, the design problem becomes an optimal control problem
on coe�cients and the analysis is based on small perturbation theory (see Reference [9]). In
both cases, the adjoint approach proposed by Lions [10] to get cost functionals gradient in
a problem with distributed or boundary control and observation has been developed. In the
functional optimization process, a descent gradient-type method (with �xed optimized step
size) is used. Numerical approximation is based on the Galerkin-�nite element method, with
Taylor–Hood elements P2 and P1 for velocity and pressure, respectively, see Reference [11].

1.3. Results and feedback

At the end of a �rst investigation stage, preliminarily reported in Reference [8], based on
optimal design by local boundary variation, a cu�ed bypass is found with a shape which
resembles the Taylor arterial patch [12]. Results reported in Section 4, based on the multi-
level control approaches, go in the same direction, using a di�erent initial con�guration.
The e�ect of the shape obtained is to reduce gradually the average velocity of the blood as
it approaches the distal anastomosis, since the cross-sectional area of the bypass is steadily
becoming larger. This prevents the sudden deceleration experienced in the conventional model
with the �uid returning to the host vessel. Blood �ows more smoothly through the vessel
thanks to the gradually changing geometry. Consequently, there is a smooth reduction of the
momentum of the blood while approaching the junction. Flow disturbances are abated and
undesirable �ow separation at the toe of the bypass diminished. Vorticity reduction by the
optimization process is quite substantial. A feedback procedure has then been implemented by
solving the unsteady Navier–Stokes equations in the original con�guration as well as in the
�nal con�guration obtained after applying the shape optimization process on the simpli�ed
model. The quadratic functional used at this stage to take into consideration wall shear stress
variations in time t (T is the heart beat) and along the vascular wall �w (Figure 1) reads

J�= mean06t6T �(t)=
1
T

∫ T

0
�(t) dt=

1
T

∫ T

0

∫
�w

(
@
@t
�w(t)

)2
d� dt (1)

and it is the L2 norm of the rate of the wall shear stress �w(t) de�ned (for a Newtonian �uid)
as

�w(t)=�
@u(t)
@n̂

· �̂ (2)

where u is the blood velocity �eld, � the blood viscosity, n̂ and �̂ are respectively normal
and tangential unit vector on the arterial wall. A reduction of 25% in wall shear stress spatial
and temporal oscillations has been achieved.
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1.4. Development guidelines

Optimal control and shape optimization applied to fully unsteady incompressible Navier–
Stokes equations and the setting of the problem in a three-dimensional geometry will provide
more realistic design indications concerning surgical prosthesis realizations. Theoretical inves-
tigation based on perturbation theory analysis and linearized shape design is providing results
on the existence and uniqueness of the solution and about well-posedness of the problem, and
is permitting us to better understand the problem from a theoretical point of view. Reduced-
basis methodology approximation is going to provide not only high computational savings but
also a methodological pre-process to detect the essential feature of the optimization process
itself (such as a sensitivity analysis). The ultimate goal is to build an input–output relationship

si=Fi(�k)

with di�erent models characterized by an increasing degree of complexity, where si are out-
puts of interest (design quantities and �uid mechanics indexes) and �k are inputs (typically
geometrical quantities).

2. CONTROL AND SHAPE DESIGN: A DOUBLE APPROACH

The Stokes equations in a two-dimensional computational domain � with velocity vector
u= {u; v} and pressure p read




−�	u+∇p=0 in �⊂R2

∇·u=0 in �

u=0 on �w; u= gin on �in; T · n̂=0 on �out

(3)

where n̂ is normal unit vector on the boundary @�. The latter is partitioned in three compo-
nents: �in is the in�ow boundary, where a Hagen–Poiseuille’s velocity pro�le gin is imposed,
�out is the arterial out�ow boundary, with a free-stress Neumann-type condition on stress
tensor T , and �w is the boundary corresponding to the arterial wall, the stenosed artery por-
tion and the incoming branch of bypass with no-slip conditions imposed; Figure 1 represents
schematically the computational geometry and the symbols used.
Velocity values at the in�ow are chosen so that the Reynolds number has order 103. Blood

kinematic viscosity � is 4× 10−6 m2 s−1 [1].
In this �rst approach, the control w represents the shape of �c: a part of �w (typically

the upper part of the incoming branch), made up of M branches �jc (w)=�
j
c + wj, where

wj is the control variable, the curves �jc represent initial shape. The control shape function
wj changes of a quantity �wj during the optimization process (gradient-based method with
optimized stepsize). At the kth iteration we have

w j
k =

k−1∑
m=0
(�w j

m) (4)
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Figure 2. Bypass con�guration (velocity [ms−1 10−2]) near the incoming branch before (left) and after
shape optimization (right) by boundary variations (30 iterations, 40% vorticity reduction).

2.1. The observation on the system

We consider vorticity as distributed observation (�ow control combined with shape opti-
mization) in the down-�eld zone �wd of the incoming branch of the bypass, de�ned as
∇ × u= @v=@x − @u=@y and we control the system by minimizing the functional

J (w)=
∫
�wd

|∇ × u |2 d� + �‖w‖2; (� � 1) (5)

where the last term provides the minimum shape deformation and guarantees existence of
the solution. During the optimization iterative process we must solve the following adjoint
problem: {−�	q+∇�=∇ × ∇ × u|�wd in �

∇ · q=0 in �; q=0 on @�
(6)

where q and � denote the adjoint velocity and pressure, respectively. Adjoint problem solution
represents sensitivity of the cost functional with respect to observation (state solution) and
allows computational savings when computing J ′(w). In fact, J ′(w)=G(q; �; w). At each
iteration, we get a new shape variation by a gradient-based method (optimized � stepsize
0¡��1)

�w j
k = − �J ′

k(w
j
k ) (7)

In 30 iterations, we have a vorticity reduction of 40% (Figure 2). This approach needs a
remeshing procedure to control the minimum angle and maximum side length of triangles
facing the boundary during mesh stretching at each iteration. For more details see [8].

2.2. Small perturbations

A second approach to local shape design is based on a map from the real domain � to a
(rectangular) reference one �̃ using a variable transformation

x̃= x; ỹ=
1

f(x; �)
y (8)
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Figure 3. Bypass con�guration (velocity [ms−1 10−2], same colourbar of Figure 2, 25 iterations and
30% vorticity reduction) after design by small perturbations (left) and its adjoint solution in reference

domain (right). Adjoint solution underlines the most sensible zone related with observation.

where f(x; �) represents the upper shape and can be developed as

f(x; �)=f0(x) + �f1(x) + �2f2(x) + · · · (9)

f0(x) being the unperturbed shape. Assuming that problem (3) has a solution u; p that is
in�nitely di�erentiable with respect to �

u= u0 + �u1 + �2u2 + · · ·

p=p0 + �p1 + +�2p2 + · · ·

and using small perturbation techniques (see Reference [13]), we can derive the equations
for uk ; pk starting from (3), after mapping � to the reference domain. At this point, we
can use optimal control techniques to solve the problem for u1; p1 (the �rst corrections), the
function f1(x) represents a perturbation in the shape f0(x) (weighted by �) and is another
unknown for the problem, used as control variable. As in the �rst approach, we use an adjoint
formulation, a gradient-type method and the same functional (observation). In this case, the
shape design problem is transformed into an optimal control problem on the coe�cients,
which depend on the co-ordinate transformation itself. Results are shown in Figure 3 in
25 iterations we achieve a vorticity reduction of about 30%, while a theoretical analysis is
reported in Reference [9]. Masmoudi et al. [14] have investigated a complementary approach
based on high-order derivatives and Taylor expansion of the cost functional with respect to
shape parameters.

3. REDUCED BASIS TECHNIQUES FOR PRE-PROCESS

Reduced basis techniques (see, e.g. References [4, 15]) are used here for a pre-process applied
to macro bypass con�guration (Figure 1), more precisely in order to obtain quantitative in-
formation about sensitivity of some geometrical quantities before applying local shape design.
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Table I. Table of velocity H 1 and pressure L2 relative errors, N620.

N Rel. err.H 1 max Rel. err. H 1 mean Rel. err. L2 max Rel. err. L2 mean

5 2:93e − 001 7:86e − 002 3:09e − 002 6:14e − 003
10 1:33e − 002 4:47e − 003 6:79e − 003 6:96e − 004
15 2:98e − 003 6:65e − 004 8:16e − 004 9:02e − 005
20 4:61e − 004 8:01e − 005 6:24e − 004 1:60e − 005

By selecting a limited number of relevant geometrical parameters (bypass diameter t, artery
diameter D, stenosis length S, graft angle 	, bypass bridge height H , see Figure 1) and a
number (N ) of sample parameters

�k = {tk ; Dk ; Sk ; 	k ; Hk}; k=1; : : : ; N

we solve the state Equations (3) in a reference domain �̃, properly mapped by a�ne trans-
formations [5]. Then we build a (reduced) basis functional space


= {uk(�k); �k(�k)}; �= {pk(�k)}; k=1; : : : ; N

for velocity and pressure, respectively. Note that 
 has been enriched by additional velocity
�k(�k), which are the so-called Supremizer solutions. These extra functions allow the spaces 

and � to satisfy a compatibility condition similar to the inf–sup condition [11]. The supremizers
are the weak solutions of the problem

−	�k + �k =∇pk (10)

For a new sample � we look for a solution

uN =
2N∑
k=1

Uk(�)
k(�k); pN =
N∑
k=1

Pk(�)�k(�k)

where the weights U= {Uk} and P= {Pk} are given by the solution of a Stokes problem on
the subspace of the reduced basis (see Reference [6] for details).
This approach can provide an indication on the �ow pattern perturbation. Increasing, for

example, the bypass graft angle from 	k ∼= 0 to �=2, the mean blood velocity increases about
43% (testing hundreds of di�erent con�gurations �k with a subspace built on N =20 basis
functions). Table I shows max and mean relative errors (H 1 for velocity and L2 for pressure)
over the same test samples.

4. SOME NUMERICAL RESULTS

We present below some numerical results obtained by applying both the optimal control by
local boundary variation (Figure 2) and the small perturbations techniques (Figure 3), starting
from the same con�guration with a small graft angle and a cu�ed upper part (as suggested
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Figure 4. Vorticity reduction achieved during the two optimization processes: shape design by local
boundary variations and small perturbations (right). Relative H 1 velocity error (max and mean) testing

a large number of bypass con�gurations using reduced basis and increasing N (left).

by results in Reference [8]). The Shape is smoothed at the intersection with the artery to
guide blood, and the corner (singularity) disappears. Figure 4 shows the reduction of the cost
functional (5) during optimization processes and H 1 error reduction (max and mean) during
reduced basis pre-process at di�erent N .
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